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F. ABSTRACT

Study of the serpentine areas of the San Francisco Peninsula has
been extended, analysed and partially evaluated. Results from this
study have been encouraging. Correlation between reflectances calculated
from the satellite measurements and reflectances measured in the field
have been high. The spectra of the serpentine species has been found
sufficiently unique to enable discrimination of the areas from ERTS.
A parallel study of an area of semi consolidated sandstones near Livermore
was also carried out, with similar results to the serpentine study, but
again with sufficiently unique signatures.

In order to enable the evaluation of studies of areas involving
vegetation coverage to be made more rigorous, a botanist has been included
in the group. Results of a study of the biomass, species composition
and vigour of the Stanford grasslands area are presented. Correlations
of their results with concurrent measurements of the reflectivity of the
grass canopy are being performed.

The tape-reading and classification program, RIPPER, has been thoroughly
tested and evaluated. Modifications to the program to increase efficiency
of core storage and accelerate the clustering algorithm are being carried
out.



G. PROBLEMS

None

H. ACCOMPLISHMENTS IN THE PAST REPORTING PERIOD

1. Field Data Collection

On the following dates field data was collected over the three mile
transect crossing the four major rock and soil types of the Stanford
Testsite.

Date for Fieldwork Grass Condition ERTS Overpass (o/p)

March 18 V. Green 100% cld-March 12 - #1597
March 21 V. Green March 30 - #1615
April 21 Green April 17 - #1633
May 5 Green with seed heads #1651 foggy
May 10 Patchily green/dead (none)
May 23 Patchily dead/green #1669 o/p

2. Biomass Study

At 44 sites, equally spaced at ERTS cell distances (t 0.05 mile), biomass
studies have been concluded, in the period May 15-May 22 immediately prior
to the final day-off of the grasses.

Reflectance (bi-directional FOV 15*) measurements, relative to a BaSO4
plate, were made before the grass was completely removed from a 0.5 X 0.5
meter square, a color slide (K-II) film was made of each site in its original
state. The reflectance was measured after cutting and the site re-photogr4phed
on color film.

The species proportions were estimated by our botanist, Roberta Sears and
the complete grass sample bagged for determination of green-weight and weight
loss after drying one night to 110*C. From those values a biomass/meter2

can be found as well as an "index-of-vigor" from the weight loss ratio (see
details elsewhere in this report).

3. Soils and Rocktype Maps

The geology and soils map were completed by J.Baker for the 8000 acres
grassland of the Stanford Testsite. In particular a detailed topography,
slope angle, geology and soils section was prepared at a 1:3600 scale, for
the 3 mile transect so that these data can form the basis of discussion of
the ground-reflectance data, taken over the past year along the same track.



4. Serpentine/Grass Cover Study

Saul Levine has completed the comparison between the CCT data from
ERTS and the ground reflectance for 23 areas of serpentine and soil and
for 2 areas on which a grass-fire burned off almost all of the grass
cover. These are reported elsewhere in this report.

5. Computer Software Development

The CCT-read programs have now been fully implemented on the PDP-10
in a interactive mode. An atmospheric correction program is in use,
with a self-clustering algorithm (see RSL Technical Report 74-4 attached).

An analysis of various classification programs has been completed
by Alfredo Prelat and a new program to extract species proportions from
mixed-pixel CCT data developed (see RSL Technical Report 74-4 attached).

6. Hardware Development

Development is commencing on the scanner system initially for low
altitude operations. It is expected that this will take 1-2 months further.

4<



STUDY OF SERPENTINE OUTCROP AREAS ALONG INTERSTATE HIGHWAY 1-280,
STANFORD SITE, CALIFORNIA

BY SAUL LEVINE

ABSTRACT

Ground reflectance measurements at the four ERTS bands, of
serpentine exposures and soils on the San Francisco Peninsula
show good correlation with distinctive four band spectra derived
from ERTS-CCT data of 6 October, 1972. Excellent correlation is
also shown, at the same date, between the ground and ERTS spectra
at a test site in semi-consolidated sandstones located on the
east side of the coastal range. It is believed both spectra are
sufficiently unique from each other,and their background to be
discriminated by a computerized clustering program.

I. PROCEDURES AND RESULTS

It had been reported previously, after a detailed seasonal study
of the ERTS-CCT data (see March 3, 1974 report) that a strong liklihood
existed that the reflectance spectra obtained during the 6 October overpass,
due to the grass dieback, essentiallyrepresented that of the soil. To
verify these tentative conclusions an extensive program of ground reflectance
measurements of bare soil was instituted at study areas I and III (serpentine
soils). Figure 1, and the Midway study area (marine sediments) Figure 2.
The normalized ground spectra obtained are tabularized in Table I and
compared with CCT deriven spectra in Figure 3. Study of this data reveals
the following:

1. The variability of the data is lower at Farm Hill Road (Area III)
and Midway than at Crystal Springs (Area I). It is believed this is due
to the difference in the size of the test areas. The Farm Hill Road
area is roughly 60 acres, Midway 960 acres, and Crystal Springs 15 acres.
The Crystal Springs site is not only smaller but quite exposed and
topographically lower, therefore subject to infiltration of material
from adjacent soils derived from the nearby Franciscan formation exposures.

2. The ERTS-CCT normalized reflectance spectra for serpentine soils at
6 October are almost identical at Crystal Springs and Farm Hill road.

3. The ground reflectance spectra for serpentine soil at Farm Hill
Road compares very favorably with the CCT data. The ground spectra
for the roadcut-and outcrop-serpentines, while comparable to each other,
are substantially different than that of the soil. It is believed that
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because of the small area extent of the outcrops as compared to the
soil and the limiting resolution of the ERTS sytem, the outcrops
have little integrated effect and only the serpentine soil is
detectable on the CCT data.

4. The correlation of the ground spectra obtained at Crystal
Springs with the ERTS-CCT data is not quite as good for reasons
treated in 1 above. The spectra seems more comparable to the sandstones
soil at Midway. Infiltration of the Franciscan sandstones may
explain the difference.

5. The variability of the serpentine outcrops at Farm Hill Road is
higher than either the relatively fresh roadcuts or the serpentine
soils. This is undoubtedly due to the variation in the weathering of
the outcrop versus the freshness of the roadcut and the homogeniety
of the serpentine soils.

6. The ground reflectance spectra obtained at Midway correlate very
well with that derived from the 6 October ERTS-CCT data.

7. A significant difference is seen in both the ERTS-CCT spectra
and the ground spectra for the serpentine soils of Crystal Springs
and Farm Hill Road and the sandstone soils at Midway.

The Midway site, interestingly enough, turns out to be an explosives
test area for the Lawrence/Livermore Radiation Laboratories at which yearly
controlled burns are utilized for presenting fires as a result of the tests.
It was noted, while at the site, that the heavy burn area at the north side
seen in the ERTS imagery was adjacent to an extensive chemically-defoliated
strip running across the entire north side of the site. Since it was believed
possible that the block sampling utilized to derive the previous CCT spectra
could have overlapped this area, it was decided to introduce a grid sampling
system across the entire area and replot that data. The results are shown in
Figure 4. It is noted that while the data obtained is essentially the same,
the curves are more consistent leading to smoother seasonal trends.

II. INTENDED ACTIVITY NEXT PERIOD

Since it is believed that this investigation has indicated that the
serpentine soils at Crystal Springs and Farm Hill Road and the sediment derived
soils at Midway are distinguishable and unique on the 6 October ERTS-CCT
data, no further effort is contemplated other than applying the computerized
clustering program described in SRSL Technical Progress Report No. 74-1.
It is hoped that this program will demonstrate the practicality of utilizing
ERTS-CCT data for mapping serpentine and sandstone-derived soils.



MIDWAY (SOIL-GROUP 1)
Reflectance

4 5 6 7 4 5 6 7
15.21 19.55 21.67 24.50 Mean 15.09 18.83 22.95 25.33
14.85 17.83 24.08 26.40 Std. Dev. 0.77 0.98 1.79 1.68

CRYSTAL SPRINGS (Group 1) 14.75 18.10 22.50 25.30 Coef. of Var. 0.55 0.05 0.08 0.07
Reflectance 15.85 19.72 24.70 26.47 Norm. Ref. 1.00 1.25 1.52 1.68

15.73 20.32 25.63 27.90
4 5 6 7 4 5 6 7 15.79 19.43 21.33 24.46
7.22 8.83 11.00 12.15 Mean 844 10.26 12.43 14.36 13.50 17.90 20.40 22.27
5.33 7.32 8.81 10.70 Std. Dev. 2.08 2.17 2.56 2.80 15.05 18.20 23.30 25.35
12.67 14.16 16.98 18.15 Coef. of Var. 0.25 0.21 0.21 0.19
6.99 8.69 10.92 13.84 Norm. Refl. 1.00 1.22 1.47 1.70 MIDWAY (SOIL-ROUP 2)
8.05 9.72 12.67 14.55
7.39 9.22 10.23 11.30 Reflectance
7.15 8.40 10.00 11.20 4 5 6 7 4 5 6 7
9.22 11.62 12.46 16.20 10.48 12.68 14.85 17.16 Mean 10.09 12.03 14.22 16.70

10.15 11.08 15.10 17.10 9.62 12.30 14.37 16.23 8td. Dev. 0.50 0.62 0.93 0.59
10.82 13.68 15.43 18.20 9.45 11.46 13.40 16.10 Coef. of Var. 0.05 0.05 0.07 0.047.86 10.10 13.13 14.85 9.53 10.92 12.32 15.84 Norm. Ref. 1.00 1.19 1.41 1.66

10.13 11.98 14.47 16.75
10.39 11.92 14.47 16.97

CRYSTAL SPRINGS (Group 2) 10.75 12.82 15.25 17.53
Reflectance 10.42 12.17 14.62 17.05

4 5 6 7 4 5 6 7
10.30 13.33 15.45 16.40 Mean 

0

12.12 16.30 16.67 17.36 Std. Dev. 18:3 1 : 
1  

1:1 MIDWAY (SOIL-GROUP 3)
11.25 12.78 14.26 15.67 Coef. of Var. 0.09 0.12 0.12 0.19 Reflectance
11.35 12.91 15.12 16.33 Norm.Ref. 1.00 1.22 1.42 1.57 4 5 6 7 4 5 6 7
11.31 11.46 18.69 23.44 18.60 21.30 25.20 30.90 Mean 15.79 18.81 22.02 23.979.40 13.27 13.46 14.31 15.33 19.34 21.80 23.27 Std. Dev. 1.66 1.43 1.78 3.38

13.40 16.72 21.10 21.50 Coef. of Var. 0.11 0.08 0.08 0.14
17.20 19.23 23.61 25.80 Norm. Ref. 1.00 1.19 1.39 1.52
14.53 17.10 19.10 22.40
14.63 18.96 21.67 21.50
16.43 18.46 21.93 22.43

A 16.22 19.40 21.80 24.30

FARM HILL ROAD (OUTCROP-GROUP 1) FARM HILL ROAD (1280 ROAD CUT)
Reflectance Reflectance

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7
16.10 16.71 17.72 18.02 Hean 14.99 16.02 17.41 18.37 21.95 20.10 16.23 T6.71 Mean 23.77 20.68 18.29 17.28 n O
14.29 14.87 14.92 16.67 Std. Dev. 1.29 2.41 2.46 2.85 24.10 21.83 18.10 18.32 Std. Dev. 2.40 1.87 2.23 1.71
12.47 11.69 13.65 13.20 Coef.of Var. 0.09 0.15 0.14 0.16 22.22 19.30 18.33 16.62 Coef of Var. 0.10 0.09 0.12 0.10
15.50 15.64 15.69 17.43 Norm. Ref. 1.00 1.07 1.16 1.23 22.98 20.52 17.83 16.93 Norm. Ref. 1.00 0.87 0.77 0.73
15.86 15.86 19.50 20.30 '25.00 21.90 19.94 19.10
13.85 13.15 15.49 15.88 26.43 20.95 20.95 17.94
14.39 16.02 18.43 19.63 28.60 24.84 22.70 20.30
14.82 18.53 19.44 21.86 25.10 21.60 18.63 17.64
15.66 19.46 21.63 22.71 24.22 21.32 17.90 16.76
16.92 18.28 17.65 18.16 22.00 19.81 16.90 15.94

20.42 18.20 14.75 15.11
FARM HILL ROAD (OUTCROP-CROUP 2) 20.21 17.61 15.03 14.04

Reflectance
4 5 6 7 4 5 6 7
15.30 15.01 14.70 14.90 Mean 14.81 15.75 16.53 19.69 FARM HILL ROAD (SOIL)
16.74 17.41 17.97 18.82 Std. Dev. 1.33 1.89 2.24 2.53 Reflectance
13.81 15.92 16.03 17.74 Coef. of Var. 0.09 0.12 0.14 0.14 4 5 6 7 4 5 6 7
14.62 15.49 17.59 18.24 Norm. Ref. 1.00 1.06 1.12 1.19 7.48 11.07 T4.91 16.60 Mean 7.43 11.33 14.96 16.97
16.53 19.28 20.00 21.56 7.09 10.71 14.40 16.20 Std. Dev. Q.45 0.65 0.58 0.59
12.86 13.01 12.88 12.81 6.97 10.78 14.68 17.05 Coef. of Var. -0.06 0.06 0.04 0.03
14.59 15.52 17.83 16.73 7.25 10.93 14.43 16.39 Norm. Ref. 1.00 1.52 2.01 2.28
14.05 14.41 15.28 15.46 7.27 12.04 14.68 17.81

7.33 11.25 15.15 17.05
7.66 11.29 15.19 16.81
8.42 12.58 16.22 17.81

H;
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I. 2. APPLICATIONS RESULTS

A. Biomass Study-The Vegetation of the Stanford Grassland
(Preliminary Report)

by Roberta Sears

A study of the vegetation at selected sites in the Stanford grassland
has been undertaken to aid in the interpretation of reflectance data
from those sites.

The Stanford grassland is a typical representative of the California
Valley Grassland plant community (1). It has been subjected to grazing
by cattle for decades which has changed the species composition entirely.
Few of the original native species remain. Most of the species of grasses
and broadbaved plants found in the grassland today have been introduced
from the Mediterranean region (2,3).

A preliminary study was done to determine the species of the grasses
and broadleaved plants growing at the study sites. Plants were collected
in early May in various stages of flower and seed formation. The plants
were identified to the level of genus of species using Thomas's Flora of
the Santa Cruz Mountains of California and Munz's A California Flora.
Specimens of each species were dried and pressed for a permanent reference
collection. The plant species found in the Stanford grassland study
sites are:

Botanical Name Common Name

Grasses: Bromus mollis Soft chess
Avena fatua Wild Oats
Lolium multiflorum Ryegrass
Bromus rigidus Ripgut grass
Hordeum leporinum Foxtail
Hordeum glaucum Wall barley

Broadleaved
Plants: Erodinm sp. Filaree, needle plant

Geranium sp. Geranium
Medicago sp. Bur clover
Convolvulus arvensis Morning glory, bindweed
Bellardia trixago Bellardia
Eschscholzia californica California poppy
Rumex sp. Sorrel

Initial observations also revealed that the vegetation at the study
sites was variable in species composition, plant size, precent cover and
time of onset of senescence and drying.



From May 15 to May 22 a detailed study of the vegetation at 44 sites
was made to determine the species composition, biomass and stage of plant
growth. At each site the vegetation was treated in the following manner:

1. A square, 0.5 m on a side, was marked off at a randomly
selected site.

2. Reflectance relative to BaSO was recorded.

3. The plant species were determined.

4. The percent contribution of each species to the total
biomass was estimated by eye.

5. All vegetation within the square was cut off at ground
level and put in an airtight plastic bag and taken to
the lab.

6. Reflectance after cutting was recorded.

7. Total fresh weight of the vegetation at each site was measured.

8. All plant material was dried in ovens at 80* tor90OC for 48 hours.

9. Total dry weight was measured.

'The reflectance at each site was measured before and after the removal
of the vegetation cover, using the ERTS radiometer, 15°FOV bidirectional geometry
(Table I). The sites vary considerably with regard to'species composition,
fresh weight, dry weight (biomass) and the ratio, dry weight/fresh weight.
The dry weight/fresh weight measurement indicates the degree to which the
plants have dried out. As the vegetation dries, the green color is lost and
the leaves turn to yellow-green then tan. The ratio of dry weight to fresh
weight is therefore, an indirect measure of the "greeness" of the vegetation.
These data will be used to interpret the reflectance data taken at the same
sites.

1. Munz, P.A. and D.D. Keck (1965) A California Flora, University
of California Press, Berkeley and Los Angeles.

2. Thomas, J.H. (1961) Flora of the Santa Cruz Mountains of California,
Stanford University Press, Stanford, California.

3. McNaughton, S.J. (1968) Ecology 49: 962-972 Structure and function
of California grasslands.



TABLE I STANFORD GRASSLANDS

Dry weight

Site Number Total wet weight Total dry weight Wet weight

946 158.3 78.9 .495
942 117.3 52.8 .450
941 105.0 62.8 .598
947 (green) 213.2 120.0 .563
917 (dry) 79.7 57.3 .719
949 119.3 71.0 .595
951 150.0 81.9 .546
953 131.1 82.7 .631
954 83.9 55.5 .662
955 70.1 54.6 .779
980 342.4 138.4 .404
982 421.8 173.0 .410

914 282.5 121.0 .428
916 306.4 128.2 .418
917- 184.6 103.2 .559
920 193.9 104.6 .539
930 333.7 160.0 .479
931 271.7 155.0 .570
932 406.5 180.0 .443
934 307.3 130.1 .423
940 344.8 122.3 .355
942 430.8 149.1 .346
943 313.9 138.5 .441
944 290.0 132.3 .456

905 354.5 168.2 .474
906 168.0 50.1 .476
908 209.5 95.8 .457
909 192.5 113.6 .590
991 220.4 98.9 .449
992 463.5 175.7 .379
994 404.3 165.4 .407
996 423.2 197.2 .466
986 411.0 152.4 .371
984 317.7 126.4 .398

905 325.5 127.1 .390
952 403.5 145.3 .360
954 367.1 164.2 .447
970 86.5 45.1 .521
972 152.0 74.1 .488
973 354.9 171.4 .483
929 191.7 81.8 .427
931 294.6 131.4 .446
933 86.2 48.2 .559
936 60.3 42.2 .700

.14'



I. 3. SUITABILITY OF ERTS DATA

No comment

J. SIGNIFICANT RESULTS

None at this stage, results in active study and analysis.

K. NEXT PERIOD

1. Completion of Biomass/Reflectance Study.

2. Airborne system development.

L. PUBLISHED MATERIALS

1. Paper attached (SRSL #74-4)

2. Two sets of Abstracts submitted to IEEE for possible acceptance
at September meeting in Philadelphia.

M. RECOMMENDATIONS

None

N. CHANGES IN STANDING ORDER FORMS

None

0. ACCESSION LIST FOR ERTS IMAGERY/TAPES OVER STANFORD

Enclosed

P. DATA REQUEST FORMS SUBMITTED

None

Q. MAILING LIST

At end of report.
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ABSTRACT

The principal barrier to routine use of the ERTS multispectral scanner computer compatible

tapes, rather than photointerpretation examination of the images, has been the high

computing costs involved due to the large quantity of information (4 X 106 bytes) contained

in a scene. STANSORT, the interactive program package developed at Stanford Remote Sensing

Laboratories alleviates this problem, providing an extremely rapid, flexible and low cost

tool for data reduction, scene classification, species searches and edge detection. The

primary classification procedure, utilizing a search, with variable gate widths, for

similarities in the normalized, digitized spectra is described in section 2, with associated

procedures for data refinement and extraction of information. The more rigorous statistical

classification procedures are described in section 3. The programs have been developed

on an interactive computer (PDP-10) with the non-specialist operator in mind, requiring

very little computing experience for their operation.

1. INTRODUCTION

When confronted with the overwhelming quantity of data available on magnetic tapes from the

ERTS-1 multispectral scanner system, it may appear to an investigator that reduction, analysis and

presentation of significant interpretations of the taped data using a digital computer would be an

expensive and time consuming approach. In comparison, visual examination of the standard imagery

product generated by NASA from the original data (or color-combinations of the data) is less expensive,

though probably more time consuming. However, this photo-geologic approach can not be correlated

readily with field-or laboratory-measured data (here referred to as "ground data").

Grouping data for a scene into distinguishable classes, for comparison with known (or suspected)

geologic, geobotanical, crop or urban features, may be accomplished with either a statistical or a

non-statistical classification procedure. These procedures may be divided further into supervised

procedures (requiring training groups consisting of either areas which are known to be uniform, or

of digitized "ground data"), and unsupervised (self-training) procedures in which the data is split

into its distinguishable groups with no prior knowledge of the number, or species, of these groups.

The statistical classification procedures are reviewed and evaluated in section 3.

*This research report is based upon work performed under NASA Contract NAS 5-21884,

the receipt of which is gratefully acknowledged.



2. NON-STATISTICAL PATTERN RECOGNITION, CLUSTERING 
PROCEDURE

2.1 UNSUPERVISED CLUSTERING PROCEDURE

The non-statistical gating procedure described 
below developed as a result of manual examination

of digitized spectra plotted for a area using the 
four MSS bands. It was realized that, for an area

of reasonable size (e.g. 30 X 30 pixels, where 
a pixel, 57 meters X 79 meters, covers approximately

I acre) only a finite number of patterns appeared. 
Figure la illustrates the patterns appearing when

traversing across a row of pixels for a scene in Mono Lake, 
California (Figure 2). Although overall

levels vary it may be observed that similar patterns 
appear across this traverse. This variation in

level is due mainly to a topographic effect: slopes facing the sun appear brighter 
than slopes facing

away from the sun; and partially due to the texture of the surface within the pixel: 
smoother surfaces

(generally composed of smaller, closely-packed 
particles) appear brighter than coarser,rough 

surfaces

of the same material. This change in brightness level may be reduced considerably 
by normalizing to

one of the.channels. The effect of normalizing to channel 4 the patterns plotted 
in Figure la is

illustrated in Figure lb.

These normalized patterns could be grouped into classes now, just by their shape. This is a

tedious approach when performed manually, yet the concept provides a very simple, rapid and economical

technique when performed by computer. The computer is required to perform the minimum 
of operations,

all.arithmetical, merely comparing values within 
some preset range, to discriminate different classes.

2.1.1 CONVERSION OF ERTS DIGITAL VOLTAGES TO REFLECTANCE VALUES

To compare the satellite results with ground data it is necessary to convert the ERTS digital

values for each channel to some more absolute measurement which will be 
virtually independent of sun

elevation and atmospheric effects. For this conversion, two (or more) "standard" 
targets are required

in any ERTS scene. One of these should have as low a reflectance as possible (preferrably zero

percent), so that it may be assumed that energy impinging on the detector from the direction 
of the

low reflectance target arises only from the radiation 
back scattered into the sensor field of view

from the atmosphere. The four ERTS channel values for this low reflectance target may then be

subtracted from the corresponding values for all 
other pixels within the scene to give a measure of

the radiation impinging on the detectors which 
arises specifically from the radiation reflected 

from

each pixel. Obviously, not all scenes have zero-reflectance 
targets within them-in this case several

targets having low reflectances must be chosen, and a 
linear extrapolation performed to give reasonable

values for a zero-reflectance target.

To convert these corrected ERTS voltages to reflectance, 
a standard high reflectance target (or

targets) within a scene must be chosen. By ratioing the corrected channel voltages for 
an unknown

pixel to the corresponding corrected channel voltage 
for the high reflectance target, and then

multiplying by the respective band pass reflectance 
(known from ground data) of the standard target(s)

yields the band pass reflectance of the unknown 
pixels within the scene. This procedure may be

represented explicitly by

Pu,i = Vu,i - Vz,i X Ps,i (1).

Vx,i - Vz,i

where i is the channel number. Pu,i is the bandpass reflectance of the pixel being examined. 
Ps,i

is the band pass reflectance of the standard target(s). Vu,i is the voltage in the ith channel of

the unknown pixel. Vz,i is the voltage of the zero reflectance target Vs,i is the voltage of the

high reflectance standard target.

The low and high reflectance standard targets must 
be chosen to cover an area at least three

pixels square, preferrably larger, so that the center pixel (or pixels) of the standard target give

voltages arising entirely from the standard targets, 
not affected by bordering species, particularly

if the area is to be repetitively sampled by other 
ERTS overpasses.

Again, as would be expected, only a small, finite 
number of patterns appear when these reflectances

are plotted. Levels of the reflectance patterns vary, due to 
the topographic and texture effects,

but these variations may be removed by normalizing 
to one of the four channels (c.f. the ratio

technique described by Vincent (1972)).

The technique described above has been developed into 
a rapid, inexpensive clustering program

for an interactive computer system. With the man-machine interaction the investigator 
can rapidly

choose his scene, display shadeprints as maps (for 
location) and optimize the gate used in the

clustering to suit his particular requirement and 
the size or complexity of the area being examined.

The classification procedure searches through the array for the first unclassified pixel and a

descriptor (alphabetic) assigned for this pattern. 
The remainder of the unclassified pixels are

then compared with this "standard" pattern. If the pattern of an unclassified 
pixel agrees with

17<



the current "standard" pattern within the gate width, it is given the same descriptor 
as the current

"standard". The program recycles until all pixels have been classified, or until the number of

classes exceeds twenty six (arbitrary). The set of "standard" patterns generated during the search

are stored in an array to be used, if required, to classify another scene in the same area. In this

manner very large areas may have a cluster analysis performed on them.

2.2 SUPERVISED CLASSIFICATION PROCEDURE

Whilst the unsupervised clustering technique described above is useful for 
examination of unknown

scenes, separating them into their spectrally distinguishable species, a similar 
but more powerful

technique may be used to search the band pass reflectance patterns for known types, using the ground

spectral data. The gate generally employed in this method is two or three times the 
largest standard

deviation of the normalized bandpass reflectances of the measured ground target. Obviously for this

approach the standard targets in a scene must be chosen carefully, according 
to statistical sampling

technique, and their reflectances measured.

2.3 NOISE AND SMOOTHING

When radiance data for a large, uniform scene (eg. water) is examined, noise 
with a six row

periodicity may be observed, resulting from the basic detector design 
in the MSS. This noise is in

phase for channels 4,5 and 7, but out of phase by two scan lines for channel 6. The origin of this

noise is not clear-it may be due to slight differences in detector responses or 
to a misalignment of

the detector array. This noise must be removed as completely as possible for a reliable cluster

analysis to be performed, not to do so makes each sixth line a separate class. Since it is in the

form of one or two unit spikes every sixth line, it is ideally suited to treatment by a digital

smoothing technique described by Savitsky and Golay (1964). As the convolution blurs the image

slightly, it must be performed in two dimensions in order that the change in contrast will be uniform.

The result of this smoothing is evident in Figures 3a and 3b. Figure 3a is the result of a

cluster analysis without smoothing on an island in Mono Lake. Figure 3b shows the analysis of the

same scene (with the same tolerance) after smoothing of the data. The water surrounding the island

appears non-uniform in the unsmoothed cluster analysis result, but becomes uniform after smoothing.

2.4 BOUNDARY SEARCHES-EDGE DETECTION

After smoothing it is possible to search for abrupt changes in contrast, such as occur at sharp

boundaries, deep valleys or borders between materials with large differences in reflectivity. In this

manner, a search for linear, curvilinear or elliptical features may be pursued and, hopefully, some

correlation between the presence of these features, their intersections and changes 
in classification

using the clustering algorithm may be observed. Figure 4 illustrates the result of "edge detection"

for the same scene clustered in Figure 3b.

2.5 COST IN COMPUTATION

The clustering technique as outlined above has proven to be very rapid. No direct comparison

with a statistical clustering program is available yet, although the BMDO7M stepwise discriminant

program has been employed and found to require approximately ten times the computing time, even when

using training groups initially generated by our unsupervised clustering 
program. Obviously the time

required for classification is a function of the number of pixels in 
the scene, and also the width

of the gate. Figure 5 illustrated the times required as a function of the area of the scene in the

vicinity of the island in Mono Lake for different gate widths.

At present the program is being extended to "defocus" the scene, so that large areas may be

examined by averaging four, nine or sixteen pixels (in a square), clustering them to look for broad

patterns, then examining sub-scenes of the large scene in 1 X 1 pixel detail. Statistical procedures

are being inserted to provide means , standard deviations and histograms of areas classified by the

clustering algorithm, or of areas selected by the operator.

The program has been developed with the non-specialist in mind. It is completely interactive

and self explanatory so that a person with no computing experience is able to examine ERTS tapes.

It is designed specifically for use with a limited budget, with fast turn around time.

3. SRSL NUMERICAL CLASSIFICATION TECHNIQUES

This section outlines the theoretical basis of numerical classification technqiues used in

conjunction with the procedure described above. Together they constitute the software system for

analysis of ERTS multispectral data in operation at the Stanford Remote Sensing Laboratory. 
Four

numerical classification procedures are discussed, two of which are supervised and two of which

are unsupervised.



3.1 SUPERVISED CLASSIFICATIONS

A classification is supervised when data points of unknown origin are assigned into a priori

defined classes.

3.1.1 NEAREST NEIGHBOR

Most of the classification techniques depend upon the assumption that samples 
have been drawn

from a normal population. The Nearest Neighbor method makes inferences without any assumptions as to

the form of distribution in the population. Such procedures are said to be non-parametric or

distribution-free. The technique consists of classifying unknown data points into known categories

through comparison with known data. Each unknown sample is allocated to that group to which it is

nearest in terms of the D
2 
generalized-distance statistic. Thus, the degree of similarity between

two samples is provided by the distance that separates them; the shorter the distance the greater

the degree of similarity, and vice-versa.

The nature of non-parametric statistical inferences usually requires testing with large 
amounts

of data to achieve a respectable degree of accuracy (Swtizer el.al.,196
8
).

3.1.2 MULTIVARIATE DISCRIMINANT ANALYSIS

Multiple discriminant analysis is a statistical method of assigning 
samples in a probabilistic:

manner to previously defined populations on the basis of a number of variables considered simultaneously.

The use of the discriminant function may be considered in terms of a population consisting of

X variables, which forms a cluster of points in X-dimensional space. A second population, described

by the same X variables, consists of a second cluster of points. The linear combination of variables,

that defined a multi-dimensional plane efficiently separating the two clusters of points is 
the

discriminant function. The degree of distinctness of the two clusters can be analyzed by measuring

the "distance" between their multivariate means. Once this distinctness has been established and

the separating plane computed, additional unknown samples can be assigned in 
one or the other of the

groups depending on which side of the discriminant plane they fall.

The basic assumptions about the data are: (i) the observations in each group are randomly

chosen; (ii) the probability of an unknown observation belonging to either group is equal; (iii)

the frequency distributions of the groups are each multivariate Gaussian distributions 
with a common

covariance matrix. This means that the distributions have identical bell-shapes and differ only in

that they are centered at different points.

The BMDO7M is a stepwise discriminant analysis program, and is part of a series of 
bio-medical

statistical analysis programs compiled by the UCLA Health Services Computing Facility. 
The stepwise

discriminant analysis indicates that the computation of discriminant functions is not simply based

on the original variables considered as a whole, but rather that the variables are entered separately

and consecutively by order of discriminatory power. The advantage of this procedure is to recognize

the relative importance of each variable in classifying the samples into the different groups. Rank-

ing the variables by predictive power permits a concentration of efforts 
on those factors which are

important for classifying groups, and this can represent a highly effective 
means of reducing costs

of data collection and processing.

The computational procedure of the stepwise discriminant technique is described 
in the user's

guide of the BMDO7M program (Dixon, W.J.,ed.,1972).

3.2 UNSUPERVISED CLASSIFICATIONS

Classification is unsupervised when similar data points are placed into an unknown 
number of

distinct classes in which the data points of each class have a closer similarity 
to each other than

to the data points in all other classes.

3.2.1 CLUSTER ANALYSIS BASED ON DISTANCE-SIMILARITY MATRIX

A distance-similarity matrix is obtained to determine the relationship of the data. The use

of distance is based on the concept that a quantitative measure of the degree of 
similarity between

two variables or two samples is provided by the distance that separates them in a rectangular coordinate

system. As the distance becomes shorter the degree of similarity increases and vice versa. 
The

sample points are grouped or clustered in a hierarchical dendritic network 
(dendogram) in which their

interrelationships, as contained in the distance-similarity matrix, are shown with greatest simplicity.

In a two-dimensional case, two samples are plotted according to the values of the two variables,

X and Y. The distance between these two points is, by simple geometry, the square root of the sum

of the squared differences between X and Y values of the two points; as in a right triangle the

square of the hypotenuse is equal to the sum of the squares of the two sides of the triangle.

This calculation of the distance assumes that the input variables (or the axes from which they

are measured) are uncorrelated,that is, orthogonal or at right angles to each other. However, most

raw variables are correlated to different degrees so that the coordinate axes would not be at right



angles and the simple Euclidean distance formula would be inaccurate. To overcome this difficulty,

the raw variables are transformed to a new set of uncorrelated orthogonal variables by a series

of linear transformations (for details see Sebestyen, 1962). In calculating the distance coefficients

for the similarity matrix it is convenient to limit its value to the range 0.0 to 1.0. To satisfy

this requirement, the original data is transformed, so that all the measurements are positive and

range from zero to one.

Finally, a cluster analysis is performed to measure the degree of similarity between samples

on the basis of the distance-similarity matrix. Distances close to 0.0 represent maximum similarity,

distances close to 1.0 represent minimum similarity. A cluster diagram is printed out with the value

of the distance coefficients. Groups of similar samples can be selected at any desired level of

similarity, and each group can be plotted on a geometric matrix or map.

The present procedure accomplishes clustering by computing a matrix to measure 
all pairwise

similarities between data points on the basis of the measurements corresponding to the channels of

the scanner. The procedures cannot be used when large data sets are to be analyzed because 
the

size of the distance-similarity matrix becomes too large for the core storage requirement 
of the

computing equipment.

4.1.2 ISOMIX: AN ITERATIVE CLUSTERING PROGRAM

Similar cluster programs have been developed by Stanford Research Institute (Ball and Hall,

"ISODATA", 1965), Purdue University (Wacker and Landgrebe, 1971) and Lockheed Electronic Company

(Kan, Holley and Parker, "ISOCLS", 1973). ISOMIX (Stanford) essentially follows the iterative

clustering procedure of ISOCLS; however, new statistical techniques have been added to help the

analyst in the interpretation and evaluation of the final data points grouped 
into clusters. The

following is an outline of the main steps: The program first computes the initial cluster centers

and assigns them to regions of high sample-point density. Then the samples are sorted, one by one, on

the basis of their distance from a set of initial cluster centers which create a cluster 
of data

points or vectors X and Y is defined as
n

d(X,Y) = xi-Yj (2)
i-I

After the samples have been sorted the mean and standard deviation for each subset in 
each

dimension (variable) is computed.

Those clusters which contain only a few sample points are discarded. Splitting of the clusters

takes place if the standard deviation in any dimension is greater than a suitable threshold specified

by the analyst. When the cluster is divided two new centers are formed. These centers are (. ,

.... a ....... p ) and (p , ...... -0 ... P ) where(p , ,..... ) and (a ,o ,..., n) are 1he

mean and standard Reviation'foi the dimensions in the oriiinil cluster, and iA t e Kth dimension

the original cluster contains the largest standard deviation.

The degree of distinctness of the clusters is measured by the similarity of "cluster 
centers"

attached to regions of high density of data points. The distance or measure of similarity between

two clusters C and C, where C is characterized by P + ( , .. ) and standard deviation
1 2  1 n

(1))(())((2 )
a ( ..... n ) and C2 by () and a) (Kan, Holley and Parker, 1973), is defined as

(n 2 2 1/2

D(C1,C2) - l i (3)
1 a oIz

If the distance D(.,.) between two clusters is less than a specified threshold, the two cluster

centers are merged into one at a weighted mean of the two original clusters.

The progressis cycled repeatedly until the standard deviation in every channel of the 
generated

clusters is less than the specified threshold, or the maximum number of clusters desired by the

analyst is reached.

ISOCLS's chaining algorithm is used to link those subclusters which are close to at least one

other subcluster. - This linking process determines the subpopulations, the union of which constitutes

the parent population.

In the last step the overall areal proportions of various clusters are obtained. For example,

if p is the areal proportion of a specified cluster j, nj is the number of sample points counted

of te specified cluster j, and N the total number of sample points, then the usual 
estimator of



the areal proportion p. is p. = n./N. Finally in the last step, the pattern complexity which gives
the spatial scale of variati~n is also obtained. A pattern that has a cluster A with its samples
in a contiguous body is less complex than another with the same proportion of cluster A distributed
in many scattered smaller units. One index to express the pattern complexity (Switzer, 1973) is

X total length of boundaries between different sample points (4)

(area of region) 1/2

The value of X is invariant to the choice of the measurement unit. As the X value increases the
pattern grows in complexity.

The output gives the statistics for each cluster and includes a map showing the final cluster
assignments of all the points in the area analyzed. These maps are geographic matrices preserving
the original position of the data points.
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4 5 Figure 1. Digitized spectra resulting from
(a) plots of

40 I * (a) Raw ERTS digital voltages
plotted against channel number.

U (b) ERTS digital voltages normalized
•o 2to channel 4, plotted against channel

Snumber,

for section of a scan line across
Negit Island and portion of Mono

Sb(h Lake, California.

Figure 2. Negit Island, Mono Lake, California.
Dark areas of island are basaltic
lava flows and cones of varying
texture, white "beaches" composed
of calcareous tuffs.
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ABSTRACT

A study of the magnitude and effect of atmospheric backscattering

and varying irradiance of a scene on the reflected radiance observed

by ERTS. Radiance values of two standard reflectance targets are

examined.
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by
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SUMMARY

In order to be able to compare results from ERTS MSS data over a

series of tapes, the perturbing effects of a variable contribution due

to radiation scattered by the atmosphere into the detector field of

view, and of the variation in the irradiance on a target with solar

zenith angle, must be eliminated. These two effects may be compensated

for, or entirely removed, by studying selected targets in a scene,

one (or more) of low (zero) reflectance, one (or more) or high, known

reflectance. In some scenes, however, suitable reflectance targets

may not be obtained. When this occurs, atmospheric modelling must be

employed to arrive at some values for the atmospheric scattering

contribution, and for the irradiance on the scene.

Two targets of measured, constant reflectivity in the area of San

Francisco, California are studied. The first standard, a waste

products treatment pond at an oil refinery near Suisun Bay, having an

area of approximately 0.3 square miles, and bandpass reflectances of

<0.5% in all four bands, is assumed to have a zero contribution to the

radiance recorded by ERTS. The radiance observed then arises entirely

from atmospheric scattering. The variation in these radiance values as

a function of solar zenith angle is compared with models for atmospheric

scattering.

Dr. F.R.Honey Dr. R.J.P.Lyon
Department of Applied Earth Sciences Department of Applied Earth Sciences
Stanford University Stanford University
Stanford, California 94305 Stanford,California 94305
(415) 497-4147 < (415) 497-3262
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A COMPARISON OF OBSERVED AND MODEL-PREDICTED ATMOSPHERIC PERTURBATIONS

ON TARGET RADIANCES MEASURED BY ERTS

F.R. Honey & R.J.P. Lyon

The second target, a concrete parking apron for aircraft at

Moffett Field, California, assuming that it remains dry during the

period of study has constant reflectances of 27.8, 31.0, 30.0, and

32.3 percent bandpass reflectances in four 4SS equivalent channels.

Using these values, the radiance observed by ERTS may be corrected

for the atmospheric contribution, and thus values for the irradiance

on the target may be calculated. These values may be studied as a

function of solar zenith angle and compared with results from models.

The technique of using standard targets within a scene is applied

to a specific scene which contains an area of measured reflectivity.
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Multivariate discriminant analysis may be used to enhance the resolution

capability of optical sensing device. Probabilistic functions are

obtained to investigate the interrelationship among objects. In turn,

the mixture of radiation received by the sensor from a ground resolution

element containing different objects is quantified and defined.
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SUMMARY

The probabilistic model design attempts to solve the problem of

variability of spectral signatures. This variability occurs when the

instantaneous ground resolution elements contain different objects.

As a consequence, the sensing devise receives a mixture of the radiation

from each of the separate objects. These mixtures need to be recognized

and defined when numerical classification techniques or pattern

recognition algorithms are used to process the data.

The multivariate statistical technique known as discriminant analysis

is used to classify the remote multispectral data into different groups.

Discriminant scores are computed for each observation (pixel) by linear

transformations, and the geometric planes separating different groups

are established.

The basic assumptions about the data are (i) the observations in

each group are randomly chosen; (ii) the probability of an unknown observation

belonging to either group is equal; (iii) the frequency distributions of

the groups are each multivariate Gaussian distributions with a common

covariance matrix. This means that the distributions have identical

bell-shapes and differ only in that they are centered at different points.
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The discriminant scores are arranged in a frequency table, grouping

adjacent observations into class intervals. Outcome frequencies based

on the frequency tables are obtained for each group.

In turn, the "score probability function" attached to different

groups are defined. The score probability functions are used to

differentiate between those observations which are mixtures of radiation

from those which contain only one radiation.. In this way, those areas

under the score probability function which represent variability of

spectral signatures are effectively defined. The number of observations

in each group has to be at least equal to the number of variables

measured multiplied by a factor of five. This is necessary in order that

an adequate statistical base is provided to compute the "score probability

function".

The objective of the model is to estimate the different score

probability functions. Once the probability functions are available,

they can be utilized to locate ground resolution elements containing

different objects. The results of the procedure are used as input to

clustering algorithms and numerical classification techniques for

computing more accurate boundaries and separability among different

groups.
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TABLE 01. ERTS IMAGES ACQUIRED OVER STANFORD UNIVERSITY TEST AREA

(R=REQUESTED)
OBSERVATION FIELD MICROFILM DATE CLOUD ORBIT PRINCIPAL POINT SUN SUN PRODUCTS RECD.

ID DATA ROLL NO. ACQUIRED COVER NUMBER (C) OF IMAGE AZIM ELEV AT STANFORD
LAT. LONG. MS B7 P M9

* i. 1003-18175 - 10001/0126/7 07/26/72 10 42 3805N 12146W 118.7 58.7 4 4 - 2 R
2. 1021-18172 - 10001/1226 08/13/72 0 293 3724N 12145W 124.5 55.8 R 8 R R -
3. 1039-18172 - 10002/0074 08/31/72 0 544 3725N 12150W 132.5 51.9 4 2 R R -
4. 1057-18172 - 10002/0598 09/18/72 20 795 3721N 12149W 140.2 47.1 R R R R -
S5. 1075-18173 - 10004/0236 10/06/72 0 1046 3729N 12144W 146.8 41.6 4 8 R 2 4
6. 1093-NO FRAMES TAKEN 10/21/72 - 1297 152. 35. - - - - -
7. 1111-18181 - 10004/1570 11/11/72 60 1548 3715N 12153W 153.9 30.9 4 8 - 2 -
8. 1129-18181 - 10005/0498 11/29/72 20 1799 3725N 12150W 154.6 26.7 4 8 - 2 -
9. 1147-18181 - 10006/0333 12/17/72 90 2050 3718N 12151W 153.4 24.5 - - - - -

10, 1165-18175 - 10006/0898 01/04/73 10 2301 3724N 12146W 151.1 24.2 4 8 - 2 R
11. 1183-18175 - 10007/0170 01/22/73 20 2552 3732N 12146W 148.2 26.3 4 8 R 2 4
12. 1201-18181 - 10007/0782 02/09/73 80 2803 3725N 12151W 144.9 30.5 - - - - -
13. 1219-18182 - 10008/0440 02/27/73 100 3054 3726N 12156W 141.6 36.3 - - - - -
14. 1237-18183 - 10009/0470 03/17/73 40 3305 3727N 12200W 138.1 42.8 4 8 - 2 -
S15. 1255-18183 - 10009/1329 04/04/73 0 3556 3730N 12201W 134.2 49.4 8 4 - 1 4
S16. 1273-18183 - 10010/0613 04/22/73 0 3807 3726N 12201W 129.4 55.2 4 8 - 2 4

* 17. 1291-18182 F 10010/1539 05/10/73 0 4058 3731N 12201W 123.3 59.6 8 4 - 1 4
18. 1309-18181 F 05/28/73 3735N 12201W 117.0 61.0 8 4 - 2 R
19. 1327-18180 F 06/15/73 3730N 12153W 113.0 62.0 4 8 - 2 R

* 20. 1345-18174 F 10012/1181 07/03/73 30 4811 3725N 12202W 112.5 61.6 4 8 - 2 R
21. 1363-18173 F 10013/0135 07/21/73 30 5062 3725N 12202W 115.0 59.0 4 8 - 2 R
22. 1381-18172 R 10013/1276 08/08/73 50 5313 3721N 12203W 122.0 56.0 - - - - -
23. 1399-18170 R 08/26/73 5564 3726N 12201W 129.0 52.0 - 8 - 2 4
24. 1417-18164 - 09/13/73 3725N 12158W 137.9 48.0 4 8 - 2 -
25. 1435 - 10/01/73 - - - - -
26. 1453 F 10/19/73
27. 1471- - 11/06/73

028. 1489-18152 F 10018/0397 11/24/73 30 6819 3727N 12151W 153.9 27.5
29. 1507- - 12/12/73 Rain

*30. 1525-18145 F 10019/0697 12/30/73 Clearl0 7321 3723N 12155W 151.0 23.0
31. 1543-18141 10020/0371 1/17/74 Cloud 1007572 3732N 12150W 148.0 25.0
32. 1561-18133 2/04/74 Foggy 3729N 12145W 144.0 28.0
33. 1579-18131 F 2/22/74 OK (SU) 3733N 12147W 141.0 33.0

3/12/74 Cloudy

A



TABLE 02. TAPES IN STANFORD RSL DATA FILE

STANFORD MONO LAKE

1003-18175 07/26/72 1055-18055 9/16/72
(+1003-18175 RBV) 1091-18062 10/22/72

1075-18173 10/06/72 1063-18063 1/02/73
1183-18175 01/22/73 1235-18070 3/15/73
1255-18183 04/04/73 1307-18064 5/26/73
1273-18183 04/22/73 1397-18053 8/24/73
1291-18182 05/10/73 1361-18060 7/19/73
1345-18174 07/03/73
1489-18152 11/24/73

WALKER LAKE SAN LUIS

1055-18053 09/16/72 1074-18114 10/05/72
1091-18055 10/22/72 1254-18125 4/03/73
1163-18060 01/02/73
1235-18064 03/15/73
1289-18063 05/08/73
1307-18062 05/26/73
1361-18054 07/19/73 S. SALINAS
1397-18051 08/24/73 1290-18130 5/09/73
1415-18045 09/11/73
1505-18032 12/10/73

BERRYESSA

1075-18170 10/06/72
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